Multiple structural elements determine subunit specificity of Mg2+ block in NMDA receptor channels.

نویسندگان

  • T Kuner
  • R Schoepfer
چکیده

In NMDA receptor channels, subtype-specific differences of Mg2+ block are determined by the NR2 subunits. Channels assembled from the NR1-NR2A or NR1-NR2B subunits are blocked more strongly than channels formed by the NR1-NR2C or NR1-NR2D subunits, predominantly reflecting a difference in voltage dependence. A determinant of Mg2+ block common to the NR2 subunits is located in the M2 domain (N-site or Q/R/N-site). However, subunit-specific differences of block suggested that additional structural elements exist. Chimeric NR2 subunits were constructed by replacing segments of the least sensitive NR2C subunit with homologous segments of the most sensitive NR2B subunit. Mutant NR2 subunits were coexpressed with wild-type NR1 in Xenopus oocytes, and Mg2+ block was quantified. Replacement of the entire M1-M4 region resulted in a chimera with a sensitivity of Mg2+ block similar to that of the NR2B wild type. Replacing smaller segments or introducing point mutations did not generate channels with Mg2+ block characteristic of NR2B wild type. However, combining in a single chimera three small segments (M1, M2-M3 linker, M4), each independently mediating an increase in Mg2+ block, produced channels close to NR2B wild type. Thus, differences in Mg2+ block as controlled by the NR2 subunits cannot be explained by a single structural determinant in addition to the N-site. Moreover, three elements of the NR2 subunit are the major determinants of subtype-specific differences of Mg2+ block in heteromeric NMDA receptor channels.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Functional change of NMDA receptors related to enhancement of susceptibility to neurotoxicity in the developing pontine nucleus.

The developing neurons have been reported to be extremely susceptible to toxicity of NMDA during a restricted developmental period. Pontosubicular neuronal necrosis is a typical type of perinatal human brain lesion and often coexists with other forms of cerebral hypoxic and ischemic injuries. To determine whether functional changes of NMDA receptors related to the susceptibility to NMDA toxicit...

متن کامل

Permeant ion effects on external Mg2+ block of NR1/2D NMDA receptors.

Voltage-dependent channel block by external Mg2+ (Mg2+(o)) of NMDA receptors is an essential determinant of synaptic function. The resulting Mg2+(o) inhibition of NMDA responses depends strongly on receptor subunit composition: NR1/2A and NR1/2B receptors are more strongly inhibited by Mg2+(o) than are NR1/2C or NR1/2D receptors. Previous work showed that permeant ions have profound effects on ...

متن کامل

Effect of acute exposure to ethanol on distribution of NR1 subunit of NMDA receptor of glutamate in cerebral cortex of chick embryo

Introduction: There is considerable evidence that glutamate-mediated excitatory neurotransmission plays an important role in mediating the behavioral actions of acutely administered ethanol. The aim of the present study was to investigate the effect of acute ethanol exposure on NR1 subunit of NMDA (n-methyl-d-aspartate) receptor distribution in the cerebral cortex of chick embryo on the 10th...

متن کامل

Liposome reconstitution and modulation of recombinant N-methyl-D-aspartate receptor channels by membrane stretch.

In this study, the heteromeric N-methyl-D-aspartate (NMDA) receptor channels composed of NR1a and NR2A subunits were expressed, purified, reconstituted into liposomes, and characterized by using the patch clamp technique. The protein exhibited the expected electrophysiological profile of activation by glutamate and glycine and internal Mg2+ blockade. We demonstrated that the mechanical energy t...

متن کامل

O 3:Therapeutic Potential of a Novel NMDA Receptor Subunit 2B Antagonist in a Mouse Model of Autoimmune Neuroinflammation

Glutamate-mediated excitotoxicity and neurodegeneration have been shown as pathophysiological hallmarks of multiple sclerosis (MS) and other autoimmune inflammatory CNS disorders. N‑Methyl‑D‑Aspartate (NMDA) receptors play a pivotal role in the mediation of neuronal glutamate excitotoxicity leading to cellular damage and apoptotic cell death. Current treatment approaches targeting glutamate exc...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of neuroscience : the official journal of the Society for Neuroscience

دوره 16 11  شماره 

صفحات  -

تاریخ انتشار 1996